6 research outputs found

    Sketch recognition of digital ink diagrams : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Computer Science at Massey University, Palmerston North, New Zealand

    Get PDF
    Figures are either re-used with permission, or abstracted with permission from the source article.Sketch recognition of digital ink diagrams is the process of automatically identifying hand-drawn elements in a diagram. This research focuses on the simultaneous grouping and recognition of shapes in digital ink diagrams. In order to recognise a shape, we need to group strokes belonging to a shape, however, strokes cannot be grouped until the shape is identified. Therefore, we treat grouping and recognition as a simultaneous task. Our grouping technique uses spatial proximity to hypothesise shape candidates. Many of the hypothesised shape candidates are invalid, therefore we need a way to reject them. We present a novel rejection technique based on novelty detection. The rejection method uses proximity measures to validate a shape candidate. In addition, we investigate on improving the accuracy of the current shape recogniser by adding extra features. We also present a novel connector recognition system that localises connector heads around recognised shapes. We perform a full comparative study on two datasets. The results show that our approach is significantly more accurate in finding shapes and faster on process diagram compared to Stahovich et al. (2014), which the results show the superiority of our approach in terms of computation time and accuracy. Furthermore, we evaluate our system on two public datasets and compare our results with other approaches reported in the literature that have used these dataset. The results show that our approach is more accurate in finding and recognising the shapes in the FC dataset (by finding and recognising 91.7% of the shapes) compared to the reported results in the literature

    A specialized face-processing model inspired by the organization of monkey face patches explains several face-specific phenomena observed in humans

    Get PDF
    Converging reports indicate that face images are processed through specialized neural networks in the brain –i.e. face patches in monkeys and the fusiform face area (FFA) in humans. These studies were designed to find out how faces are processed in visual system compared to other objects. Yet, the underlying mechanism of face processing is not completely revealed. Here, we show that a hierarchical computational model, inspired by electrophysiological evidence on face processing in primates, is able to generate representational properties similar to those observed in monkey face patches (posterior, middle and anterior patches). Since the most important goal of sensory neuroscience is linking the neural responses with behavioral outputs, we test whether the proposed model, which is designed to account for neural responses in monkey face patches, is also able to predict well-documented behavioral face phenomena observed in humans. We show that the proposed model satisfies several cognitive face effects such as: composite face effect and the idea of canonical face views. Our model provides insights about the underlying computations that transfer visual information from posterior to anterior face patches

    Deep learning in spiking neural networks

    No full text
    International audienceIn recent years, deep learning has revolutionized the field of machine learning, for computer vision in particular. In this approach, a deep (multilayer) artificial neural network (ANN) is trained, most often in a supervised manner using backpropagation. Vast amounts of labeled training examples are required, but the resulting classification accuracy is truly impressive, sometimes outperforming humans.Neurons in an ANN are characterized by a single, static, continuous-valued activation. Yet biological neurons use discrete spikes to compute and transmit information, and the spike times, in addition to the spike rates, matter. Spiking neural networks (SNNs) are thus more biologically realistic than ANNs, and are arguably the only viable option if one wants to understand how the brain computes at the neuronal description level. The spikes of biological neurons are sparse in time and space, and event-driven. Combined with bio-plausible local learning rules, this makes it easier to build low-power, neuromorphic hardware for SNNs. However, training deep SNNs remains a challenge. Spiking neurons’ transfer function is usually non-differentiable, which prevents using backpropagation.Here we review recent supervised and unsupervised methods to train deep SNNs, and compare them in terms of accuracy and computational cost. The emerging picture is that SNNs still lag behind ANNs in terms of accuracy, but the gap is decreasing, and can even vanish on some tasks, while SNNs typically require many fewer operations and are the better candidates to process spatio-temporal data
    corecore